Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(rev, nil) -> nil
app2(rev, app2(app2(cons, x), l)) -> app2(app2(cons, app2(app2(rev1, x), l)), app2(app2(rev2, x), l))
app2(app2(rev1, 0), nil) -> 0
app2(app2(rev1, app2(s, x)), nil) -> app2(s, x)
app2(app2(rev1, x), app2(app2(cons, y), l)) -> app2(app2(rev1, y), l)
app2(app2(rev2, x), nil) -> nil
app2(app2(rev2, x), app2(app2(cons, y), l)) -> app2(rev, app2(app2(cons, x), app2(app2(rev2, y), l)))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(rev, nil) -> nil
app2(rev, app2(app2(cons, x), l)) -> app2(app2(cons, app2(app2(rev1, x), l)), app2(app2(rev2, x), l))
app2(app2(rev1, 0), nil) -> 0
app2(app2(rev1, app2(s, x)), nil) -> app2(s, x)
app2(app2(rev1, x), app2(app2(cons, y), l)) -> app2(app2(rev1, y), l)
app2(app2(rev2, x), nil) -> nil
app2(app2(rev2, x), app2(app2(cons, y), l)) -> app2(rev, app2(app2(cons, x), app2(app2(rev2, y), l)))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
app2(rev, nil) -> nil
app2(rev, app2(app2(cons, x), l)) -> app2(app2(cons, app2(app2(rev1, x), l)), app2(app2(rev2, x), l))
app2(app2(rev1, 0), nil) -> 0
app2(app2(rev1, app2(s, x)), nil) -> app2(s, x)
app2(app2(rev1, x), app2(app2(cons, y), l)) -> app2(app2(rev1, y), l)
app2(app2(rev2, x), nil) -> nil
app2(app2(rev2, x), app2(app2(cons, y), l)) -> app2(rev, app2(app2(cons, x), app2(app2(rev2, y), l)))
The set Q consists of the following terms:
app2(rev, nil)
app2(rev, app2(app2(cons, x0), x1))
app2(app2(rev1, 0), nil)
app2(app2(rev1, app2(s, x0)), nil)
app2(app2(rev1, x0), app2(app2(cons, x1), x2))
app2(app2(rev2, x0), nil)
app2(app2(rev2, x0), app2(app2(cons, x1), x2))
Q DP problem:
The TRS P consists of the following rules:
APP2(rev, app2(app2(cons, x), l)) -> APP2(app2(cons, app2(app2(rev1, x), l)), app2(app2(rev2, x), l))
APP2(app2(rev1, x), app2(app2(cons, y), l)) -> APP2(app2(rev1, y), l)
APP2(app2(rev1, x), app2(app2(cons, y), l)) -> APP2(rev1, y)
APP2(rev, app2(app2(cons, x), l)) -> APP2(app2(rev1, x), l)
APP2(rev, app2(app2(cons, x), l)) -> APP2(rev2, x)
APP2(rev, app2(app2(cons, x), l)) -> APP2(app2(rev2, x), l)
APP2(app2(rev2, x), app2(app2(cons, y), l)) -> APP2(app2(rev2, y), l)
APP2(rev, app2(app2(cons, x), l)) -> APP2(rev1, x)
APP2(app2(rev2, x), app2(app2(cons, y), l)) -> APP2(rev2, y)
APP2(app2(rev2, x), app2(app2(cons, y), l)) -> APP2(app2(cons, x), app2(app2(rev2, y), l))
APP2(app2(rev2, x), app2(app2(cons, y), l)) -> APP2(cons, x)
APP2(rev, app2(app2(cons, x), l)) -> APP2(cons, app2(app2(rev1, x), l))
APP2(app2(rev2, x), app2(app2(cons, y), l)) -> APP2(rev, app2(app2(cons, x), app2(app2(rev2, y), l)))
The TRS R consists of the following rules:
app2(rev, nil) -> nil
app2(rev, app2(app2(cons, x), l)) -> app2(app2(cons, app2(app2(rev1, x), l)), app2(app2(rev2, x), l))
app2(app2(rev1, 0), nil) -> 0
app2(app2(rev1, app2(s, x)), nil) -> app2(s, x)
app2(app2(rev1, x), app2(app2(cons, y), l)) -> app2(app2(rev1, y), l)
app2(app2(rev2, x), nil) -> nil
app2(app2(rev2, x), app2(app2(cons, y), l)) -> app2(rev, app2(app2(cons, x), app2(app2(rev2, y), l)))
The set Q consists of the following terms:
app2(rev, nil)
app2(rev, app2(app2(cons, x0), x1))
app2(app2(rev1, 0), nil)
app2(app2(rev1, app2(s, x0)), nil)
app2(app2(rev1, x0), app2(app2(cons, x1), x2))
app2(app2(rev2, x0), nil)
app2(app2(rev2, x0), app2(app2(cons, x1), x2))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
APP2(rev, app2(app2(cons, x), l)) -> APP2(app2(cons, app2(app2(rev1, x), l)), app2(app2(rev2, x), l))
APP2(app2(rev1, x), app2(app2(cons, y), l)) -> APP2(app2(rev1, y), l)
APP2(app2(rev1, x), app2(app2(cons, y), l)) -> APP2(rev1, y)
APP2(rev, app2(app2(cons, x), l)) -> APP2(app2(rev1, x), l)
APP2(rev, app2(app2(cons, x), l)) -> APP2(rev2, x)
APP2(rev, app2(app2(cons, x), l)) -> APP2(app2(rev2, x), l)
APP2(app2(rev2, x), app2(app2(cons, y), l)) -> APP2(app2(rev2, y), l)
APP2(rev, app2(app2(cons, x), l)) -> APP2(rev1, x)
APP2(app2(rev2, x), app2(app2(cons, y), l)) -> APP2(rev2, y)
APP2(app2(rev2, x), app2(app2(cons, y), l)) -> APP2(app2(cons, x), app2(app2(rev2, y), l))
APP2(app2(rev2, x), app2(app2(cons, y), l)) -> APP2(cons, x)
APP2(rev, app2(app2(cons, x), l)) -> APP2(cons, app2(app2(rev1, x), l))
APP2(app2(rev2, x), app2(app2(cons, y), l)) -> APP2(rev, app2(app2(cons, x), app2(app2(rev2, y), l)))
The TRS R consists of the following rules:
app2(rev, nil) -> nil
app2(rev, app2(app2(cons, x), l)) -> app2(app2(cons, app2(app2(rev1, x), l)), app2(app2(rev2, x), l))
app2(app2(rev1, 0), nil) -> 0
app2(app2(rev1, app2(s, x)), nil) -> app2(s, x)
app2(app2(rev1, x), app2(app2(cons, y), l)) -> app2(app2(rev1, y), l)
app2(app2(rev2, x), nil) -> nil
app2(app2(rev2, x), app2(app2(cons, y), l)) -> app2(rev, app2(app2(cons, x), app2(app2(rev2, y), l)))
The set Q consists of the following terms:
app2(rev, nil)
app2(rev, app2(app2(cons, x0), x1))
app2(app2(rev1, 0), nil)
app2(app2(rev1, app2(s, x0)), nil)
app2(app2(rev1, x0), app2(app2(cons, x1), x2))
app2(app2(rev2, x0), nil)
app2(app2(rev2, x0), app2(app2(cons, x1), x2))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 9 less nodes.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
APP2(app2(rev1, x), app2(app2(cons, y), l)) -> APP2(app2(rev1, y), l)
The TRS R consists of the following rules:
app2(rev, nil) -> nil
app2(rev, app2(app2(cons, x), l)) -> app2(app2(cons, app2(app2(rev1, x), l)), app2(app2(rev2, x), l))
app2(app2(rev1, 0), nil) -> 0
app2(app2(rev1, app2(s, x)), nil) -> app2(s, x)
app2(app2(rev1, x), app2(app2(cons, y), l)) -> app2(app2(rev1, y), l)
app2(app2(rev2, x), nil) -> nil
app2(app2(rev2, x), app2(app2(cons, y), l)) -> app2(rev, app2(app2(cons, x), app2(app2(rev2, y), l)))
The set Q consists of the following terms:
app2(rev, nil)
app2(rev, app2(app2(cons, x0), x1))
app2(app2(rev1, 0), nil)
app2(app2(rev1, app2(s, x0)), nil)
app2(app2(rev1, x0), app2(app2(cons, x1), x2))
app2(app2(rev2, x0), nil)
app2(app2(rev2, x0), app2(app2(cons, x1), x2))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
APP2(app2(rev1, x), app2(app2(cons, y), l)) -> APP2(app2(rev1, y), l)
Used argument filtering: APP2(x1, x2) = x2
app2(x1, x2) = app1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
app2(rev, nil) -> nil
app2(rev, app2(app2(cons, x), l)) -> app2(app2(cons, app2(app2(rev1, x), l)), app2(app2(rev2, x), l))
app2(app2(rev1, 0), nil) -> 0
app2(app2(rev1, app2(s, x)), nil) -> app2(s, x)
app2(app2(rev1, x), app2(app2(cons, y), l)) -> app2(app2(rev1, y), l)
app2(app2(rev2, x), nil) -> nil
app2(app2(rev2, x), app2(app2(cons, y), l)) -> app2(rev, app2(app2(cons, x), app2(app2(rev2, y), l)))
The set Q consists of the following terms:
app2(rev, nil)
app2(rev, app2(app2(cons, x0), x1))
app2(app2(rev1, 0), nil)
app2(app2(rev1, app2(s, x0)), nil)
app2(app2(rev1, x0), app2(app2(cons, x1), x2))
app2(app2(rev2, x0), nil)
app2(app2(rev2, x0), app2(app2(cons, x1), x2))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
APP2(rev, app2(app2(cons, x), l)) -> APP2(app2(rev2, x), l)
APP2(app2(rev2, x), app2(app2(cons, y), l)) -> APP2(app2(rev2, y), l)
APP2(app2(rev2, x), app2(app2(cons, y), l)) -> APP2(rev, app2(app2(cons, x), app2(app2(rev2, y), l)))
The TRS R consists of the following rules:
app2(rev, nil) -> nil
app2(rev, app2(app2(cons, x), l)) -> app2(app2(cons, app2(app2(rev1, x), l)), app2(app2(rev2, x), l))
app2(app2(rev1, 0), nil) -> 0
app2(app2(rev1, app2(s, x)), nil) -> app2(s, x)
app2(app2(rev1, x), app2(app2(cons, y), l)) -> app2(app2(rev1, y), l)
app2(app2(rev2, x), nil) -> nil
app2(app2(rev2, x), app2(app2(cons, y), l)) -> app2(rev, app2(app2(cons, x), app2(app2(rev2, y), l)))
The set Q consists of the following terms:
app2(rev, nil)
app2(rev, app2(app2(cons, x0), x1))
app2(app2(rev1, 0), nil)
app2(app2(rev1, app2(s, x0)), nil)
app2(app2(rev1, x0), app2(app2(cons, x1), x2))
app2(app2(rev2, x0), nil)
app2(app2(rev2, x0), app2(app2(cons, x1), x2))
We have to consider all minimal (P,Q,R)-chains.